

Mathematics Methods Units 3,4 Test 1 2017

Section 1 Calculator Free Differentiation, Applications of Differentiation, Anti Differentiation

STUDENT'S NAME

DATE: Thursday 2 March

TIME: 33 minutes

MARKS: 33

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (6 marks)

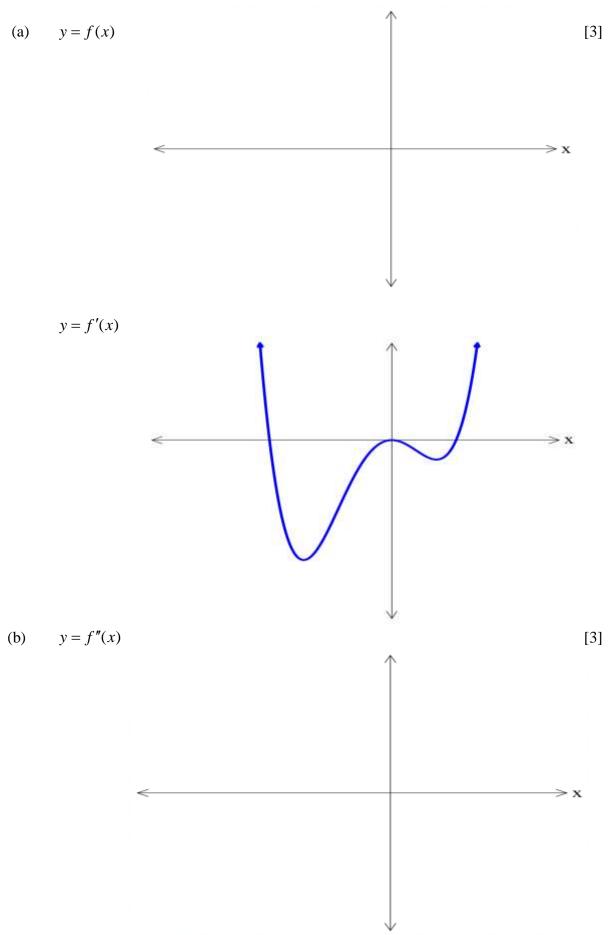
Given $y = x + \sqrt{x^2 - 4}$, show that $(x - 4)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = 0$

2. (5 marks)

Use calculus to determine the % error in the volume of a spherical hot air balloon of diameter 32 metres if no allowance was made for the stretching of the material resulting in a 3% error in the diameter.

3. (10 marks)

Determine each of the following.

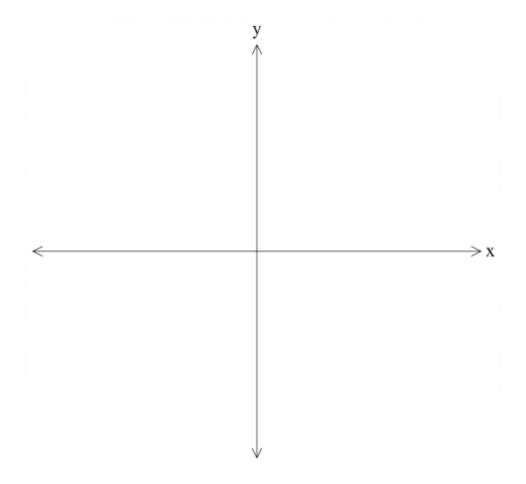

(a)
$$\int \frac{2x - x^5}{3x^4} dx$$
 [3]

(b)
$$\int \frac{2}{\sqrt{1-2x}} dx$$
 [3]

(c)
$$\int_{-1}^{2} (x-2)^2 dx$$
 [4]

4. (6 marks)

Given the sketch of y = f'(x), sketch y = f(x) and y = f''(x) below.



5. (6 marks)

By determining each of the following

- Stationary points
- Points of inflection
- Axis intercepts
- Values of y for $x \to \pm \infty$

sketch $y = -x^3 - 3x^2 + 4$ on the axes below.

Mathematics Methods Units 3,4 Test 1 2017

Section 2 Calculator Assumed Differentiation, Applications of Differentiation, Anti Differentiation

STUDENT'S NAME

DATE: Thursday 2 March

TIME: 21 minutes

MARKS: 21

INSTRUCTIONS:

Standard Items: Special Items: Pens, pencils, drawing templates, eraser Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

6. (4 marks)

The point (2, b) lies on $y = \frac{a+4x}{3x+5}$ and the gradient at that point is 8. Determine a and b.

7. (4 marks)

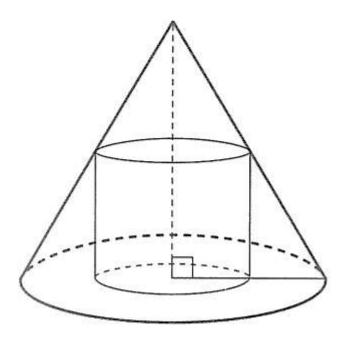
The duration of one vibration of a pendulum of length *l* is given by $t = \pi \sqrt{\frac{l}{1.1}}$, where *t* is

measured in seconds and l is measured in centimetres. Given that a pendulum of length 97.8 cm vibrates once a second, use calculus to determine the approximate change in time of one vibration if the pendulum is lengthened to a metre.

8. (4 marks)

During the course of an epidemic, the proportion of the population infected t months after the Epidemic began is given by $p = \frac{t^2}{5(1+t^2)^2}$.

(a) Determine the maximum proportion of the population that becomes infected. [2]


(b) Determine the time at which the proportion infected is increasing most rapidly. [2]

9. (4 marks)

Determine an expression for f(x) if $f'(x) = x^2 + x + k$ for all x and f(0) = -2 and f(-1) = 0

10. (5 marks)

A right circular cone has a radius of 18 cm and a height of 12 cm. Determine the volume of the largest cylinder which will fit inside the cone.

